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On the radiation and scattering of short surface waves. 
Part 1 

By F. G. LEPPINGTON 
Department of Mathematics, Imperial College, London 

(Received 2 May 1972) 

The radiation and scattering of time-periodic surface waves by partially im- 
mersed objects is investigated in the short-wave asymptotic limit B-+ 0, where e 
is a non-dimensional wavelength. Details are given for the prototype radiation 
and scattering problems in which the fluid has infinite depth and the body is a 
two-dimensional dock of finite width and zero thickness. The solutions are then 
generalized to deal with other two-dimensional geometries, with the restriction 
that the ends of the obstacle are horizontal for a distance of many wavelengths. 
The method of matched expansions is used. A first approximation &, presumed 
to  be a good estimate for the potential throughout most of the fluid region, is 
obtained by replacing the free-surface condition by its formal limit $o = 0. I n  
the vicinity of the ends of the obstacle, the correct surface condition is used but 
the geometry of the problem is simplified. The remaining surface layers are dealt 
with by superimposing on the function $o regular wave trains of the appropriate 
amplitude. 

1. Introduction 
If a body is partially immersed in a fluid and undergoes simple harmonic 

oscillations, then its motion will ultimately produce a system of regular siiiusoidal 
wave trains, radiating outwards, that are confined within a thin layer close to 
the free surface. Similarly, if the body is held fixed and is irradiated by a regular 
wave train, then it will scatter surface waves that travel outwards. The purpose 
of this work is to predict the amplitude of these induced wave trains, in the limit of 
wavelengths very small compared with a characteristic length scale a of the 
obstacle. For simplicity, the radiating and scattering bodies are taken to be two- 
dimensional, with generators parallel to the z axis and fluid in the half-space 
y > 0 of a Cartesian co-ordinate system. 

Since we are considering motions that are time-periodic, the velocity potential 
is of the form %($(x, y)e""t), where w is the radian frequency; the time depen- 
dence is described by the factor e-iut, which appears throughout and will hence- 
forth be suppressed. 

A typical radiation problem, in which the normal velocity on the wave maker 
S has the prescribed value 9{ V(x)e-iot), involves finding a harmonic function 
$(x, y) that satisfies the linearized boundary conditions 

a$/& = V on S (1.1) 
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and $ + E q 5 ,  = 0, y = 0 (1.2) 

on the mean free surface, where e = g/w2 is (1/277) times the wavelength of surface 
waves, g is the acceleration due to gravity and 4, is used to denote a$lay. In  
addition we require an edge condition 

S(a$/aS)+o as S-to, (1.3) 

where S is the distance from a point where the obstacle meets the fluid, and a 
condition to ensure that waves travel outwards at  infinity. Thus 

the asymptotic evaluation of the constants A+ and A_, for small E ,  is the main 
objective of this work. 

For the related scattering problem, in which a wave train q5i is incident upon a 
fixed body, the function V of (1 .1)  is set equal to zero, and the radiation condition 
(1.4) is applied to the scattered potential 4- q5i. 

It is important to note the fact that the outward wave trains (1.4) are formed a t  
a distance of many wavelengths from the wave maker S.  Taking x to be positive, 
for example, and using (xo, yo) to denote the point on X with the largest x 
co-ordinate, it is asserted that, apart from wave-free terms that vanish as 
x - xo --f co, 

This means that a regular wave train is formed when the distance x - xo from Xis 
much greater than the wavelength, with x - xo either small or large compared 
with the size of X. 

To establish this property, the potential $(x, y) a t  any point is represented in 
terms of its values $(x’, y‘) on 8, together with the Green’s function G(x’, y‘; x, y) 
specified by the conditions 

q5 N A*exp{( kix-y)/e) as x-++co; (1.4) 

q5 N A+exp {(ix - y)/e) as (x - x,)/E --f co. (1.5) 

Y’ > 07 

with G+eaG/ay’ = 0 when y‘ = 0, (1.7)  
and a radiation condition a t  infinity. An application of Green’s theorem to the 
functions $(XI, y‘) and G leads to the identity 

where n‘ denotes the normal from S into the fluid. 

apart from wave-free terms, the far-field form 
Now the function G is readily calculated and is found (cf. Holford 1964) t o  have, 

G N -iexp{i(x-x’)/e-(y+y’)/E) as (x-x’)/e+co. (1.9) 
This approximation is uniformly valid for all (x‘, y’) on 8, provided (x -x*) >> e, 
so that substitution of (1.9) into formula (1.8) yields the desired result (1.5); the 
amplitude constant A+ is seen to be given in terms of the (unknown) potential on 

though this will not be used here to calculate A+.  
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A siniilar argument holds for finite depth h, using the Green’s function whose 
normal derivative vanishes at y = h. The wave trains (1.4) and (1.5) have E 

replaced by el, given by e = el coth ( h / ~ ~ ) ,  and there are some additional wave-free 
terms that vanish when x - xo > h. 

An asymptotic solution of the problem (1. I)-( 1.4) is sought by posing different 
approximations in different regions. Since E is supposed small it is natural to 
take, as a first approximation, a function q50 that is obtained by formally setting 
c = 0 in the boundary condition (1.2). Such an approximation could reasonably 
be expected to be valid throughout most of the fluid region, but it is obviously 
incorrect near the free surface, since #o does not have the required wavelike 
behaviour there. In  view of the fact that regular wave trains decay rapidly with 
increasing yle it  seems plausible to  suppose that this ‘outer’ approximation holds 
good up to  distances that are many wavelengths 27re from the free surface: this 
distance is small on the length scale a of the obstacle, since €/a is small. 

At points that are very close (on bhe length scale a )  to an end of the body, where 
it meets the free surface, an observer will be well aware of the waviness of the 
surface, but will be aware of only the local shape of the obstacle. Thus the approxi- 
mations near the two ends involve simplifications in the geometry of the body, 
with solutions that are slowly varying functions of independent variables scaled 
with respect to wavelength; the formal transformations used are described in 
detail below. 

Since these ‘inner solutions’ are valid oidy well within a distance a from the 
ends, there is some difficulty in assigning boundary conditions at  infinity: points 
at  great distances from the ends lie outside the region of validity of the inner 
approximations. A similar difficulty arises in deciding on the correct edge con- 
ditions for the outer approximation #,,, which is not valid a t  the ends. The idea 
of matched expansions provides the means of completing the specifications for 
the inner and outer solutions. For if 6 denotes the distance from one of the ends of 
the obstacle, then the outer estimate is presumed valid for 6 9 e and the inner 
solution is valid for 6 < a;  if E < 6 < a there is evidently a common region of 
validity, in which both approximations must be equivalent in some sense. The 
formal machinery for exploiting this equivalence has been propounded by 
Van Dyke (1964), and a description of the precise matching principle used here is 
given in the appendix. 

Detailed analyses are given, in $32 and 4, for the prototype radiation and 
scattering problems in which the geometry is that of a finite dock on a fluid of 
infinite depth. 

Asymptotic solutions t o  these problems have already been given by Holford 
(1964) and Leppington (1968, 1970). Holford has shown that they can be for- 
mulated as integral equations, of the second kind, with kernels that are suffi- 
ciently small to ensure solution by iteration in the short-wave limit. This method 
has the advantage of providing a rigorous derivation of the leading term for the 
amplitude of the radiated and scattered waves; it is not useful for calculating 
higher order terms, nor is it readily capable of extension to different geometries. 

The present approach is not rigorous, but is amenable to generalization to 
other geometries and able to deal with higher order expansions. Section 2 includes 
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the analysis for higher order approximations in the radiation problem for the 
finite dock with fluid of infinite depth. Extensions to other geometries are 
described in the remaining sections with explicit results given in $ 9  3 and 5 for 
the radiation and scattering by a finite dock on a fluid of finite depth; scattering 
by a T-shaped dock, with fluid of infinite depth, is described in 9 6 ,  where further 
generalizations are also suggested. 

2. Prototype radiation problem: the finite dock 
A detailed description will be given here of the prototype problem of waves 

generated by the verticaI motion of a dock of negligible thickness and width 2a 
on the surface of a fluid of infinite depth. Co-ordinates are chosen so that the 
half-width a of the dock is the unit of length, with fluid in the half-space y > 0. 
The dock occupies the region y = 0, 1x1 < 1, and undergoes small amplitude 
vibrations of velocity S?{ V(x)e-’iat}, producing a two-dimensional irrotational 
velocity field of potential 9 { $ ( x ,  y)e-iwt}. The time factor e-iwt will be suppressed, 
and the potential $(x, y) therefore satisfies the conditions 

a$py = V ( x )  (Y = 0,jxI < 11, (2.2) 

$+Ea$/ay = 0 (y = 0,IxI > 1). (2.3) 

Here E = g / d a  = g/w2 is (1/2n) times the ratio of wavelength to dock half-width, 
and is taken t o  be small. Uniqueness requires further edge conditions, 

&(a$/a&) -+ 0 as a2 = (x ? 1)2 + y2+ 0, (2.4) 

and a radiation condition, 

$ - A*exp{( + i x - y ) / ~ }  as x++oo, (2.5) 
together with terms that vanish as x2 + y2 + co. The condition (2.5) ensures that 
the surface waves travel outwards a t  large distance from the dock, and the asymp- 
totic evaluation of the constants A+ is the primary objective of this investigation. 
It is sufficient to calculate A,, since the symmetry of the problem may then be 
used to  obtain A- from A, by simply changing V ( x )  to V (  -x). 

(i) The outer approximation 
A first approximation to the potential, and one that is presumed to be valid a t  all 
points that are many wavelengths distant from the free surface, is specified by 
formally taking the limit F + O  in (2.3), to  get 

We may no longer insist on the condition (2.4) a t  the two edges, which lie 
outside the region of validity of $o; nevertheless, it transpires that $o does in fact 
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FIGURE 1. Co-ordinate system. The local co-ordinates ( X ,  Y )  and (8, 0 )  are centred on the 
edge z = 1, and (XI, Y,) and (a,, fll) are centred on x = - 1. 

satisfy such edge conditions, as will be indicated later. The specifications (2.6) 
permit no surface waves, of course, so that the condition a t  infinity is simply 
that q50 should vanish a t  great distances from the origin. 

The problem (2.6) is a simple one that can be solved by conformal transforma- 
tion. I n  particular, Holford (1964) shows that the solution satisfying an edge 
condition is such that 

To this particular solution for q5* may be added any eigensolutions that vanish 
on the free surface and have zero normal derivative on the dock. Such solutions 
QE have singularities, a t  one or both of the edges, where QE = O(S,-?&+*), 

6*2 = (x+ 1 ) 2 + y 2 ,  

with n a positive integer. It will be shown later that such eigensolutions added to  
q50 must have zero coefficients. 

I n  order to calculate the behaviour of Qo near the edge x = + 1, y = 0, we set 
x = 1 + 6 and expand the integral (2.7) for small 6 ta get 

An approximation that is valid for all points in the vicinity of the edge follows a t  
once from (2.8) together with (2.6). For if (6,8) are local polar co-ordinates based 
on the edge, given by x = 1 + 6 cos 8, y = 6sin 8 (see figure l), then the solution of 
Laplace’s equation that is consistent with (2.8), and q50(x, 0) = 0, x > 1, is given 

$o(S,O) N 164sin&?, &-to,  (2.9) 
by 

where (2.10) 

The corresponding estimate near the other edge, in terms of the variables 
(6,) 8,) defined by x = - 1 - 6, cos 8, and y = - 8, sin 8, (see figure 1)) is obtained 
from (2.9) and (2.10) on replacing V ( x ) ,  6 and 8 by V (  -x), 6, and 0,. 

(ii) The inner approximations 

At points that are very close to an edge (i.e. a t  distances much less than the dock 
width), an observer will be well aware of the waviness of the free surface, but will 
become unaware of the presence of the other edge in the limit &+ 0. Evidently the 
significant length scale is that of wavelength, suggesting the co-ordinate resealing 

x = l+EX, y = E Y ,  (2.11) 
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to examine the structure of the solution near the edge x = 2 1, with 

$(x,y) = $(I + € X , € Y )  = @ ( X ,  Y )  (2.12) 

expressing the potential as a function X and Y. For the potential near the other 
edge, we write n: = - 1 -€XI  and y = ET, with $(x, y) = Y ( X l ,  YJ. I n  terms of the 
co-ordinates (2.11) and (2.12) the boundary-value problem for the potential 
takes the form 

(&+$)a) = 0 ( Y  > O), (2.13) 

a@/aY = EV(l+€X)  ( Y  = 0, -2/€ < x < O),  (2.14) 

@++@.lay = 0 (Y  = 0, X > 0 (or X < - 2 / ~ ) ) .  (2.15) 

It is required to find an approximation that is valid a t  points where the distance 
from the edge is small compared with the dock width, whence 

R = (X2+ Y2)t < 1/€. 

It is therefore natural to expand the function V ( 1  + E X )  as a Taylor series and to 
apply the boundary condition (2.14) for all negative X .  As for the boundary 
condition for large values of R = S/E, this must be chosen so that the two approxi- 
mations $o and @ match smoothly. For if 6 is chosen so that 

€ < d < l ,  (2.16) 

then both approximations are valid. That is to say, an observer at distance 6 
from the edge is close to the edge in the sense that he is a fraction of dock width 
away, with the estimate (2.9) being valid; also, our observer is at great distance 
from the edge on a wavelength scale, whence the inner variable R is large. Thus we 

(2.17) 
require asymptotic limit $(S, 8) = asymptotic limit @(R, 8), 

this being a special case of the more general matching principle, due to Van Dyke 
(1964), that is discussed briefly in the appendix. Similar considerations near the 
other edge require that lim$(Sl+O) = limY(Rl+co). This equivalence of the 
two approximations provides the missing boundary condition a t  infinity for our 
inner approximation @; the formal procedure is to write our outer estimate $o in 
terms of the inner variables X and Y and expand for small 6 to get, using (2.9), 

S+O R- tm  

lim $o = ~3IRtsin30, 6 < 6 < 1, 
8-0 

suggesting that @ - (2.18) 

with the behaviour of @, a t  large distance chosen t o  satisfy the matching require- 
ments described above. Thus our problem for @,, is 

( z + q @ o = o  ax2 ay2 ( Y > O ) ,  I 
i a@,/aY = 0 ( Y  = 0, x < O ) ,  

@,,+aoO/aY = 0 ( Y  = 0, x > O), 

(2.19) 

together with an edge condition a t  R = 0 and the condition a t  infinity that 

0, N IR3 sin + outgoing wave train as R 3 CQ. (2.20) 
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The necessity for an outgoing wave condition on the inner potential CD, follows 
immediately from the far-field estimate (1.5); this ensures the onset of a regular 
outgoing wave train at distances x- 1 B 6 (i.e. x’ $ l), even within the inner 
region x- 1 < 1. 

It is convenient to subtract out the large wave-free potential from Q0 by 
writing 

whence Go is the harmonic function that has the boundary conditions 

CDo = I(R* sin $0 - $Go), (2.21) 

8Go/aY = 0 ( Y  = O,X < 0), Go+aGo/8Y = X-8 ( Y  = 0 , X  > 0) ,  

with an edge condition a t  R = 0 and outgoing wave condition as X -+ co. This 
potential is that due to a pressure distribution proportional to Po(X)  = X-B over 
the surface X > 0, with a rigid dock over the rest of the surface, X < 0, and the 
solution for problems of this type is given by Holford (1964). If P o ( X )  is written in 
the form of a Laplace transform 

(2.22) 

then 

where 

(2.23) 

( X  < 0). 
1 A(s) J R ( t )  cos t Y e t X  dt 

@ ( X ,  Y;s) = -- - n s - i  0 t ( t - i )  t+s  

The symbol $ mdenotes a Cauchy principal value, and 
0 

(2.25) 

is analytic except for a branch cut from 0 to - 03, with 

A(teiin) = - t(t T i ) /A ( t )  (t real). (2.26) 

I n  the present case the pressure P o ( X )  = X-4 (whence!II,(s) = (ns)-.S) and is 

e3CDo N A,ei/€eeix-P = A,exp{(ix-y)/e) as X-+co, (2.27) 

seen from the first term of (2.24) to produce a surface wave train given by 

where the amplitude constank is given by 

The integral of (2.28) is found to have the value n by integrating the function 
l/s4A(s) round a closed contour, in the complex-s plane, slotted along the negative 
real axis and bounded by circles of radii p1 and pz, finally letting p1 + 0 and p2 -+ co. 
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(Similar integrals are treated in detail by Holford 1964; Leppington 1970.) The 
solution (2.21)-(2.24) for @,(X, Y )  has an obvious analogue Yo(Xl, Yl), describing 
the potential near the other edge x = 1; we simply replace ( X ,  Y )  by (XI, Yl),  and 
I by 1', which is calculated by changing V ( x )  to V (  -x) in the integral (2.10). 

It is possible to justify, a t  Chis stage, an earlier assertion that no eigenfunction 
q5E can be added to the outer approximation q50. For the addition of such a term 
would produce a term like C6-"+3 sin =$d at one or other of the edges. Taking 
n = I, for example, this would require an inner expansion of the form @ N e-i@,, 
with @, specified by (2.19), together with the condition @, N CR-*sin@ a t  
infinity, and no such function exists other than the trivial one Qo = 0, with C = 0. 

(iii) The surface wave region 

The function &@, gives an estimate for $ in the region that is close, on a dock- 
width scale, to the edge x = 1; a t  the outer extremity of this near-field region, 
where X is large and x - 1 is small, it has been seen that a regular wave train has 
been formed. Our description of the potential field requires knowledge of the 
solution in the important remaining region that is close to the free surface, and 
many wavelengths from the edge. 

Now the far-field estimate (1.5) shows that the aforementioned wave train, 
formed towards the outer extremity of the inner region a t  distance much greater 
than a wavelength from the edge, propagates without change along the rest of the 
free surface. Thus for the remaining surface wave region, we simply continue the 
outer approximation $, up to the surface, and add the regular wave train (2.27) 
that has been formed near the edge. That is, 

Q #,(XI + A,exP{(ix-Y)/4 (x > e) ,  (2.29) 

in the surface wave region. This function obviously matches with $,,, since the 
additional wave term is exponentially small as y increases; the matching with 
the inner field e*@, is ensured by our very construction of @,. To this order, then, 
the regular wave train propagating towards x = 00 has the amplitude constant 
A, given by (2.28), which is in agreement with earlier results (Holford 1964; 
Leppington 1970). The corresponding amplitude A- is obtained from (2.28) 
by changing 1 to I'  (i.e. V(x) to V (  -x)). 

(iv) Higher order approximations 

The may is now clear to calculate higher order approximations, by continuing the 
outer and inner expansions, q5, and @ and Y, to the required accuracy, matching 
a t  each of the edges. Finally the surface-layer estimate is written down by super- 
imposing $ on the regular wave trains arising from @ and Y. To illustrate the 
method, details are given below for the special case of constant velocity; the 
same procedure holds for general V(x), and involves only the additional problem 
of calculating the expansions analogous to these (2.38) that are given here for 
constant V. Since the problem is linear, we may take the constant velocity to  
have the value V = 1, without any loss of generality. 

In order to investigate the development of the outer expansion $(x; e ) ,  it is 
necessary t o  expand the edge solutions Q, and Yo a little further. It is found from 
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the exact solution (2.21)-(2.24), with TIo(s) = n-is-* and I = -26, that, for 
large R, 

1 
2877 

(Do N - 2QR3 sin $8 + - {(n - 8) cos $8 + sin 48 log R}R-B 

1 
23n 

+ - {log 4 + y + 1 - in}R-* sin $8, (2.30) 

together with a regular wave train, where y = 0.5772 ... is the Euler constant. 
The symmetry of the problem ensures an identical expression for Yo(Rl, el) on 
replacing R by Rl. Rewriting the estimate (2.30) in terms of the outer variable 
6 = ER, it is seen that e*(D0(8/e, 8) contains terms of order e loge and e; this suggests 
that the outer approximation q5 has the form 

q5 - $(l) = q50 + E log + ~ q 5 ~  as e -+ 0, x fixed, (2.31) 

in which the superscript (1) denotes an expansion up to and including terms of 
order el. On substituting (2.31) into the boundary-value problem (2.1)-(2.3) and 
formally equating like terms in E ,  the functions $,,, $1 and q52 are seen to satisfy 
the Laplace equation, together with the conditions 

and each of these functions must also vanish a t  infinity. 
These are quite simple problems that can be solved by conformal-transforma- 

tion methods. It is found that the solutions are given, in terms of z = x + iy, by 

q50 = 9 { i ( 2 2 -  I)* - iz), (2.35) 

$hl =A9{i(-)l-i(-) x + l  B 
2 - 1  + ), 

Z-1 z + l  
(2.36) 

and 

(2.37) 

The square root and logarithmic functions have branch cuts from z = _+ 1 that 
lie in the half-plane y < 0, and are chosen to be real and positive when z is a large 
real number. The constants A and B that occur in the eigensolutions $1 and $ z  are 
arbitrary real numbers, t o  be determined by matching; the equal weighting given 
to each of the separate eigensolutions i(z _+ l )&/(x  7 l)& has been chosen on account 
of the symmetry of the problem and would not be appropriate if V were not even 
in x. Further eigensolutions 9 { i ( x  I)"+~/(z T l)n+*} could be added to  any of the 
functions $o, or q5z, but are rejected by an argument similar to that discussed 
earlier: such additional functions would have higher order singularities a t  an edge 
and could not be matched to any inner expansion. 

The matching procedure near the edge x = 1 requires that we write the outer 
expansion $(l), given by (2.31)) in terms of the inner variables by means of the 
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transformation x = 1 +€Reie and expand formally for small 8, up to terms of 
convenient order em. Choosing m = $, the resulting function is denoted by the 
symbol qS1,*). It is found that 

Q(l,*) = d- log c{ (24A + 1/24n) R-& sin &0} 
1 

- 24R: sin $0 + - (sin 40log R + (T - 0) cos 46)R-B 
24n 

(log 4 - 4 - 4B)Rd sin &0 + e(R sin 0 - I> 1 1 -- 
23n 

+ €8 log s{RB sin 40(A2-* - 3 / 2 h ) )  + €3 

1 

23T 
+ ( 3 / 2 % ~ )  ((n - 0) cos 46 - sin &0 log R)Ri +- (#log 2 + 2 + B)Rg sin $81, 

(2.38) 

and this dictates the form of the inner expansion O(R, 6). Since the leading term 
for CD is already known to be of order €73- (cf. equation (2.19)), the first term in 
formula (2.38) must vanish, whence 

A = - 1/2n. (2.39) 

The expression (2.38) implies further that CD has an expansion, up to order €8, of 

(2.40) 
the form 

On substituting this expression into the governing equations (2.13)-(2.15)) 
with V = 1, and finally taking the limit e+-0, it  is found that each of the con- 
stituent potentials @,,, CDl, Q2 and @, is harmonic and satisfies an edge condition, 
and the free-surface condition cDi + aCDi/a Y = 0, X > 0, Y = 0. The fiinction CD, 
has derivative aO,/aY = 1 on the semi-infinite dock X < 0, Y = 0; the other 
potentials have zero normal derivative on the dock. Finally, boundary conditions 
at  infinity are provided by the matching condition CD@,l) = qY1d), which means that 
the asymptotic limits of the potentials CDo, CDl, CD2 and CD,, for large R, are given by 
the appropriate functions that occur in the curly brackets of formula (2.38). Thus 
we have, for example, 

0 @(it) = €40,,+€CD1+E*log€02+€*CD~. 

1 
24n 

(D,, N - 24Ri sin $0 +- (sin p l o g  R i- (r - 0) cos 40)R-* 

I 
-- (log4-4-4B)R-:sin+O, 

2*n 

and a comparison with the known expression (2.30) for CD,, shows that B must 
have the value 

B = +(3Iog2-1+y-i7~). (2.41) 

The constants A and B of formulae (2.36) and (2.37) are now determined, and it 
remains to calculate 01, O2 and @,. The function O, has the simple wave-free 
solution 

Ql = (Rsin0- I), (2.42) 

and since O2 - - (I/Bh)R* sin 40 at infinity, it is proportional to the known 
function Q0;  thus 

= (l/2T)Oo. (2.43) 
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It remains to calculate @,, which has the limiting behaviour 

3 
24n 

a, N 6, = - 2-3Risin $0 +- ((n- 8)  cos $0 -sin telog R) R4 

111 

+I (3  log 2 + $ + $7- 4in)Risin 40 (2.44) 

for large R. It is convenient to subtract off the large wave-free potential 6, by 

(2.45) 
writing 

Thus G is the harmonic function that has an edge condition (2.4) and is such that 

aG(X,O)/aY = 0 ( X  < 0); G+aG/aY = P ( X )  ( X  > 0), (2.46) 

(2.47) 

The solution for such a problem has already been given by formulae (2.22)- 

II (8) = - (3  log + 3 + in - 12 log 2 - 47)/2h&*, (2.48) 

and the regular wave train radiated towards x =a is given, according to (2.24) 
and (2.11), as G N A,exp{(ix-y)/s)}, where 

2%r 

a, = 6 , + G .  

where P ( X )  = (3 log X - 6 log 2 + 3 - 7 + in) /2bX*.  

(2.24). In  this case the transform II(s) has the value 

Each of the integrals has the value m, as is found by integrating the functions 
(slogs - n)/&A(s) and 1/s*A(s) round a closed contour slotted along the negative 
real axis, bounded by circles of small radius, pl, and large radius, pz. Thus 

(2.49) 

Collecting together the results (2.40), (2.28), (2.43) and (2.49), it is seen that 

@ - A,exp{(ix-y)/s} as X-tm,  (2.50) 

A, N - in-*e-i/E-@n{neg + $E% log 6 + @( - 12 log 2 - 4y + in)}. (2.5 1) 

The solution in the surface-wave region is again obtained by superimposing the 
outer solution (2.31) on the wave train (2.50). Thus A, gives the amplitude of the 
potential, the first two terms agreeing with earlier results due to  Holford (1964) 
and Leppington (1970). 

where 

3. Radiation by a finite dock on a fluid of finite depth 
The method described in detail in the prototype problem of 3 2 can readily be 

extended to  much more general geometries; with little modification we can deal, 
in principle, with the case of finite depth h and with a dock of any (two-dimen- 
sional) shape, provided that each end of the dock is horizontal for a distance of 
many wavelengths, and provided that the depth is many wavelengths. 

In  this case the surfa,ce waves have the modified length 2ne1, where 

E = el Goth (h/el);  
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el differs from e by an exponentially small term when h/e 9 1, and the far-field 
amplitudes are obtained as before, with E changed to E ,  in the wave trains corre- 
sponding to ( 2 . 5 ) .  

For such a geometry the first outer approximation $o is specified by setting 
Qo = 0 on the free surface. The local edge behaviour of this function will be of 
precisely the same form (2.9) as in the prototype problem, but with a different 
factor I, in place of the constant I appearing in (2.9).  The inner potential, 
@ - ehQ0, and the surface-wave approximation are exactly as before, with the 
constant I of (2.20) and (2.28) replaced by Il; the precise geometry of the problem 
makes its presence felt only in setting the scale constant Il. 

As an illustration of this generalization, our attention is turned to the case in 
which V ( x )  = 1 is constant, and the fluid is of constant finite depth h. The func- 
tion Qo vanishes a t  infinity and has the boundary conditions 

a$o(x,h)/ay = 0;  a$o(x, = 1 (1x1 < 1); $o(x, Q )  = 0 (1x1 > 1 ) .  (3.1) 

$o - Il 84 sin 40, (3.2) 

We require only the behaviour of $o near the edge x = 1, where 

and Il is to be found. 
Tho potential $o is found by transforming the fluid region, 0 < y < h, in the 

z plane ( z  = x + iy)  to the interior of a rectangle in the complex-5 plane. Defining 

(3.3) 
the constant k = tanh (n/2h), 
t.he required transformation is 

where sn denotes an elliptic function and the imaginary part of the logarithmic 
function is to lie between -n and 0. The dock (1x1 < I ,  y = 0) and the bottom 
surface (-a < x < CO, y = h)  map onto the opposite sides of a rectangle, 
151 < K ,  y = 0 and 161 < I<,T = K',  while the free surface maps onto the other 
sides (5 = + K ,  0 < y < K').  The constants K and K' are given in terms of the 
elliptic integral 

K ( k )  = (1-k2sin26)-Bd0 (3.5) 

as K = K(k) ,  K' = K [ (  1 - k2)6]. (3.6) 

r 
In terms of the new variables 6 and 7 (6 = f;+ iy), we have to find a harmonic 

function $o(f; ,  y) satisfying the boundary conditions 

$o( k K ,  91) = 0, 0 < y < K ' ;  K')/aq = 0, 151 < K ;  (3 .7)  

and 

where cd 5 = (1 -sn2 f ; )&/(  1 - k2 sn2 f ; )$ .  

variables, which leads to the solution 
This problem is readily handled by the standard procedure of separating 
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where ct, = (n + &)ri/K. To calculate the constant Il in (3.2), i t  is convenient to 
examine the behaviour of $, on the dock (0 = n); in terms of 5 and 7, 4, has the 
equivalent form 

$,(K - t ,  + 0) - Zl(hlc/n)4t as t --f 0. (3.10) 

Now the exact solution (3.9) shows that 

(3.11) 

(3.12) 

from Abramowitz & Stegun (1965, p. 575) ;  the device of taking the limit 7 + 0 is 
used merely to  improve the convergence of the sum for g. Thus we have, from 
(3.10) aizd (3.12), 

Zl = - 4(hk)BdK(lc).  (3.13) 

The amplitude A+ of waves generated towards x = CQ in our radiation problem 
is now estimated directly from formula (2.28), with I replaced by I l ;  thus 

A,  - - ie42477-l{h tanh (n/Zh))&K{tanh (n-/2h))e-@-i/c. (3.14) 

In  the limit of great depth, the elliptic integral K-+ Qn as h+ 00, and we recover 
the leading term of formula (2.51). The estimate (3.14) is uniformly valid for all 
h 2 h, > 0, but is not uniformly valid near h = 0 since it is essential that the 
wavelength is much less than depth (e  < h). Our units are such that the velocity 
and dock half-width have the value unity. For a dock of width 2a and velocity V,, 
we multiply the expression (3.14) by aV,, and replace h and e by h/a and €/a. 

4. Prototype scattering problem: the finite dock 
The ideas that have been used above apply equally well to the related scat- 

tering problems, in which a regular wave progressing from x = + CQ is scattered by 
afixed dock. A convenient prototype problem is again that of a finite dock 
(1x1 < 1, y = 0) on the surface of a fluid of infinite depth. 

The incident wave is taken as 

$i = 2-9 exp {[ - i(x - 1) - y]/e + &in} (4.1) 

and the total potential $(x, y; e) is the solution of the boundary-value problem 

with 
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The potential is subject to the usual edge conditions (2.4) and satisfies the 
radiation conditions 

and 

(4.4) 

(4.5) 

The reflexion and transmission constants 2 and are unknowns of the problem, 
to be found approximately in the asymptotic limit IZ+ 0; these particular forms 
for the incident, reflected and transmitted wave trains have been chosen for ease 
of comparison with earlier results (Holford 1964; Leppington 1968). 

Proceeding as before, we specify an outer approximation go, valid many wave- 
lengths from the free surface, by setting $o = 0 on y = 0, 1x1 > 1. Evidently $o is 
an eigensolution of the problem and has an overall scale constant that is as yet 
unknown, even in order of magnitude with respect to 6 .  Thus we write 

4 a(44o(x), (4.6) 

with (4.7) 

where a(€) and the real constants A and B are to be calculated by matching. 
Higher order eigensolutions are rejected: if they are included, then the matching 
procedure is found to require zero coefficients. In order to  match with an inner 
expansion @ ( X ,  Y ; e )  near the edge x = 1, we write 

x = l + s X ,  y = E Y ;  z = 1 +Reis (4.8) 

(see figure 1) and expand for small 8 to get 

This suggests an inner expansion of the form 

where 

(D(X, Y ; s )  - €-3a(€)(Do(X, Y ) ,  

(Do N 23AR-4 sin 40 as R + co, 

(4.10) 

(4.11) 

together with travelling waves. 

harmonic function (Do has to  satisfy the boundary conditions 
I n  terms of the inner variables X and Y ,  given by (4.8), i t  is found that the 

aD0(X,  0)pY = 0 ( X  < 0); (D0(X, 0) +aa0(x, 0)pY  = 0 ( X  > O), 
(4.12) 

together with the condition (4.11). 
Now this problem for (Do has a non-trivial solution only if (Do has the same order 

of magnitude as the incident wave, in order that it may possess both incoming and 
outgoing waves a t  infinity. According to the scaling (4.10), we require therefore 
that a(€) = €4, (4.13) 
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in which case (Do is the potential for the problem of scattering the incident wave 

Qi = 2-&exp(-iX- Y+*in) (4.14) 

by a semi-infinite rigid dock. This problem has the solution given by Holford 
(1964) in the form 

1 Sm (tcostY-sintY) 
7~ 0 (1+t2)A(t) 

Q,(X, Y) = 24 COB ( X  - Qn)e-Y - - ectxdt ( X  > 0), (4.15) 

with A defined by formula (2.25). In  particular, the solution for large X is seen to 

0, - (Di - 2-4 exp (iX - Y - +in) + n-4R-B sin 40, (4.16) 
be 

which shows, from (4.4), that a N 1 to this order of accuracy. This formula also 
shows, by comparison with (4.11), that 

A = 1/(2n)4. (4.17) 

I n  order to derive a similar approximation Y(Xl, Y,) near the other edge x = - 1, 
we write x = - 1 -sly,, y = eY,; z = - 1 -eRle-i@l 

(see figure 1) and expand for small e to get 

...). 

(4.18) 

(4.19) 

This suggests an inner expansion '4' N Yo, with Yo - 23BR;+sin+6,, together 
with a purely outgoing wave. The only solution that satisfies an edge condition 
and radiation condition is the trivial one, Y, = 0, so that B = 0, and the eigen- 
function (i50 can have no singularity a t  the edge x = - 1. The first non-zero term 
near x = - 1 is therefore given as 

so that 

(4.20) 

(4.21) 

The potential Y, is harmonic, and such that 

ayl(x,, o) /a~ , ,  = o (x, < 0); irl+ ay1/ay= o (x, > 01, (4.22) 

with Yl N +n-*Ri sin &el as R, --f 00, (4.23) 

together with an outgoing wave train. 
This semi-infinite dock problem is just like that (cf. equations (2.20) and 

(2.21)) already discussed in $2, differing only by a constant factor. In  particular 

(4.24) then, 

where T ' N  i e i  as E + O .  (4.25) 

The reflexion coefficient a is estimated similarly, by referring to the expression 
(4.9), with A = (27~)-4 and B = 0, which implies that the inner expansion near 
the edge x = 1 has the development 

(D N ( D O + € @ , ,  (4.26) 

Y N CY, N 2-4T' exp (iX, - Y, - Qni) as X ,  -+ 00, 

with dD, N - $n-*Rt sin $3 as R -+ 00. (4.27) 
8-2 
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Evidently a, is proportional to 
changing (Rl, 0,) to (R, 8).  Thus 

and is obtained by multiplying by - 8 and 

- 2-4R exp (ix - 1’- &i), (4.28) 

where N l - i i e ,  (4.29) 

Although Y,, and similarly @,, are in the first instance valid only in the inner 
regions that are a small fraction of a wavelength from an edge, the induced wave 
trains (4.24) and (4.28) are again continued into the surface-wave regions. 

d 

5. Scattering by a finite dock on a fluid of finite depth 
Similar arguments may be used to obtain the corresponding reflexion and 

transmission constants for more general geometries. If the fluid has (variable) 
depth of many wavelengths and if the dock is horizontal near both ends, then the 
forms of the outer expansion #,, and the inner expansion @,, and Y1 will be similar 
to those described in the prototype problem of 3 4. 

The first outer approximation e*q5,,, which satisfies the limiting free-surface 
condition q& = 0, is the eigensolution that has no singularity a t  x = - I a.nd is 
such that & = O(S-4) near x = + 1. More precisely, the expansions near the two 
edges will be of the form 

#,, N C, 8-4 sin 40 + C, 84 sin 40 as 6 + 0 (5.1) 

and $,, N C; S? sin $0, as S, + 0, ( 5 4  

near the edges 6 = 0 and 8, = 0 (figure I ) ,  where the constants C,, C, and C, 
depend on the precise geometry of the problem. 

Once those constants are known, the analysis proceeds exactly as before, with 
the two approximations Q1 and Y l  being constant multiples of the corresponding 
functions of § 4. It is readily found that the reflexion and transmission constants 
& and are then given asymptotically by the general expressions 

B - I N eiCZ/Cl; T N eiC,/C, as E + o (5.3) 

with e replaced by E ,  (e = e,coth (hle)) in formulae (4.4) and (4.5). 
It is seen again that the precise geometry of the problem influences the ampli- 

tude of the regular wave trains only in the scaling of the potentia1 q5,, near the 
edges. 

An explicit illustration is again provided for the special case of a finite dock of 
width 2 units on a fluid of constant finite depth h. 

The eigensolution #,,, which has t o  vanish on the free surface 1x1 > 1, y = 0, and 
has vanishing derivative a#,,/ay on the dock 1x1 < I, y = 0, is calculated by means 
of the conformal transformation (3.4). In  the 5 , ~  plane,we have to find a harmonic 
function within the rectangle 151 < K ,  0 < 7 < K’, with q5,, vanishing on the sides 
{ = -t K ,  and a#,,/aq vanishing on the other two sides. The singularity, that occurs 
at ( & v )  = ( K ,  0 ) ,  is such that #,, = O(l/t) ,  where t is the distance from ( K ,  0). 
Evidently #,, corresponds to a dipole at  ( K ,  0) with its axis along the 5 axis, with 
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the given homogeneous boundary conditions on the sides of the rectangle. By 
separating variables, q50 is found to have the series representation 

where Pn = n7r/2K. I n  particular, letting 7-f 0,  

The first of these sums has already been dealt with (formula (3 .12 ) )  and has the 
value (K /n )  dc f .  Manipulating the second sum in the same way, in terms of the 
node q = ecnK'IK, it  is found that 

= dc f (  1 + sn 6) - Z([), (5 .5)  

from Abramowitz & Stegun (1965, pp. 577-578), where dc, sn and Z are elliptic 
functions. 

From this exact expression for q50 ([, O), it is required only to find the constants 
C,,C, and C, of formulae (5.1) and (5.2). Setting 6' and 8, equal to 7r relates the 
required constants to the value of $o on the dock itself; equivalently, we have to 
examine the behaviour of q50([, 0)  near the points f = 2 K .  Setting [ = K - t with 
t small, the relation between 6 = 1 --x and t is found from the mapping (3 .4 )  to be 

Similarly, if 5 = - K + t,, then the small displacement t, is given in terms of 6, by 
the same formula (5.6) with (6, t )  replaced by (J1, tl). 

Now the exact solution (5.5) is found (cf. Abramowitz & Stegun 1965) to have 
the limiting forms 

and 7Tq50( -K-t,,  0) N (k2ig+g)t, - as t,+O; 

the constant E is the elliptic integral 

On substituting for t and t ,  from (5.6), and comparing with the general forms 
(5.1) and (5 .2 ) ,  the constants C,, C, and C, are calculated. Finally, the estimates 

.E! - I N ei(n/Skh) ( 3  - 4 E / K  - k2} (5.10) 
(5.3) show that 

and p N - l e i  {3 - 4E/K - k2}/{1 - 2 E / K  + k2}, (5.11) 

where k is given by (3.3). 
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6. Scattering by a T-shaped dock 
Calculations similar to those of $ 5  lead to  an asymptotic estimate for the 

scattering of a regular wave train (4.1) by a T-shaped dock that occupies the 
region 1x1 < 1, y = 0 and x = 0,O < y < d. The fluid depth is taken t o  be infinite. 

The outer approximation $ N &$,, requires knowledge of the harmonic func- 
tion $ o  that vanishes on the free surface and has zero normal derivative on the 
dock. Now the transformation 

u + iv = w = (22  + d2)*, (6.1) 

with 0 < arg w < n-, maps the dock onto the region v = 0, IuI < (1 + 
fluid in the half-space v > 0. I n  terms of w, the solution for $o is 

with 

In  particular, this solution implies that $,, has the edge behaviour 

and 

It follows at  once, from formulae (5.1)-(5.3), that the reflexion and trans- 
mission constants of (4.4)-(4.5) are given asymptotically by 

The main point of interest here is that the transmission coefficient is only 
algebraically small for smalls; one might have expected that 5? would be exponen- 
tially small, since the incident wave (4.1) is exponentially small at the bottom of 
the scatterer. 

Further generalization 
The present analysis indicates that both B -  1 and 5? will be of order B for any 
geometry, provided that the dock is horizontal within a neighbourhood of each 
edge. 

It seems likely that similar ideas may be used to deal with scattering objects 
that intersect the free surface a t  angles other than the value n- of this work. 
Suppose that the front end (x = 1) is a t  angle (p/q)n to the free surface and the 
back end is a t  angle (pl /ql)n to the free surface, then calculations on the lines of 
those given above for the dock problem predict that 

( B -  1) = O ( € Q ’ P ) ,  5? = 0(€8Ql~PlfmJ) ,  (6.6) 
if p/q,  pl/ql  =k i. This prediction seems plausible if the scatterer is locally plane 
within a neighbourhood of each end. It is possibly correct even if the object has 
non-zero curvature at the ends, though may need amendment in special cases. 
For example, if the scatterer is nearly vertical a t  the intersections with the free 
surface, i.e. p/q -+ 4 and pl/ql -+ &, then (6.6) predicts a transmission constant 
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p +  0 ( s 2 ) ;  Ursell(l961) has shown, however, that 5? = O(e4) for the semi-circular 
cylinder. This is not inconsistent with the prediction p = O(e2),  since the co- 
efficient of the leading term suggested by (6.6) might well be zero. The general 
arguments that have led to the predictions (6.6) do indicate, however, that  the 
case of vertical intersection (p /q  = + or p1/q1 = Q) is a rather special one, and not 
covered by the methods described here. 

Appendix. The matching principle 
The matching principle that gives the connexion between the outer approxi- 

mation $ ( r ;  e )  and the inner approximation @(R; s), with r = eR, is of the type 
proposed by Van Dyke (1964); it concerns expansions that involve powers of e 
and integral powers of logs. The variable r appears in the main text as either 
S or S,, one for each edge; the variable 6, which occurs in potentials in the text, is a 
parameter common to each expansion and is suppressed here. 

If the outer expansion is of the form $ 

where Hi are finite integers and m, < m2 < m3 < . . . , we denote by #m) (m E mi) 
the expansion (A 1) up to and including terms of order em. Rewriting @m)(r;  e) in 
terms of the inner variable R = r / E  and expanding as E +  0, with R fixed, up to 
terms of order en, the result is denoted by $(msn) (R;  e).  

Similarly, if the inner expansion is of the form 

where Nj are Jinite integers and n, < n2 < n3 < . . . , the function @(n) includes all 
terms of the expansion (A2) up to and including those of order en. Rewriting 
@ ( n ) ( R ;  e )  in terms of the other variable r = eR and expanding for small E up to 
terms of order em, the result is denoted by @(n,m)(t+; E ) .  

The modiJied Van Dyke principle used here states simply that 

(A 3) $(m,n) @(n,m). 

This expression is not necessarily an asymptotic representation for $. The 
'modification' to  the Van Dyke principle arises from our stipulation that all 
terms up to a given order E" be included: thus all terms in a group like &log2e, 
€2 loge and €8 must be taken together. 
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